

Extreme Wireless WiNG Quick Start Guide

Version 4 - 29/09/2017

Slava Dementyev Corporate Systems Engineer

Part 1 – What is MiNT? ..or how WiNG devices talk to each other

MiNT Protocol

MiNT protocol is the means of communication between WiNG 5 devices

MiNT Protocol

Adoption and Provisioning using Ethertype 0x8783
Layer 2 adoption

• MiNT links are « Level 1 » (default)

As a best practice: - for more than 64 Single Radio access points, layer 3 adoption is recommended - for more than 128 Dual / Tri Radio access points, layer 3 adoption is recommended

RF Domains - Introduction

RF Domain concept – When do I need to create rf-domains ?

RF Domains – Centralized Controller with Remote Sites

How to setup MINT Level 2 ?

- Controller Centralized controller in a RF Domain with no APs
- Cluster of centralized controllers with MINT L2
 Active/Standby only
- AP RF Domains with Control VLAN set to match AP Native VLAN
- All AP with DHCP option 191
 "pool1=IP-Ctrl1, IP-Ctrl2; level=2"
- Static Configuration under Profile or Device Overrides:

ap7532 84-24-8D-18-85-E4 use profile MyAnyAP use rf-domain default hostname ap7532-1885E4 controller host 192.168.1.1 pool 1 level 2 rfs4000-1AE686(config-device-84-24-8D-18-85-E4)#

• Check what AP has received from DHCP server: #show ip dhcp-vendor-options This will tell you what option 191 AP has received

What is a RF Domain Manager ?

What does the RF Domain Manager do?

- The RF Domain Manager is responsible for:
 - Collecting Statistics
 - SMART-RF & WIPS coordination
 - Remote Troubleshooting
 - Data tunneling aggregation (optionally for MINT/L2TPv3 tunnels)
 - Distributing firmware & config to other Access Points in the RF Domain

How RF Domain Manager is elected?

- Automatically elected with automatic failover:
 - If it has the highest RFDM priority rf-domain-manager priority [1 – 255]
 - If it has the highest CPU (eg. NX9600 > NX5500 > AP8533 > AP6522)
 - If it has the lowest MiNT ID (show mint id)
 (eg. when all devices are the same type)

AP as RFDM scaling

		АР	Access Point RF Domain Manager WiNG 5.5+
	Г	AP 6511	24
Low Tier		AP 621 / 6521	24
		AP7602 7622	128
		AP 622 / 6522	128
		AP 650 / 6532	128
		AP 6562	128
		AP 71X1	128
		AP 7161	128
Mid/High Tier		AP 7181	128
		AP 81XX	128
		AP 82XX	128
		AP75X2	128
		AP7612 AP7632 AP7662	256
		AP8432	256
		AP8533	256

How MINT Level 2 works

 Access Points on the Remote RF Domain are « *level 2* » *adopted* by NX controller using the DHCP option 191

How MINT Level 2 works

Access Points on the Remote RF Domain are « *level 2* » *adopted* by NX controller using the DHCP option 191

2 The access points receive their configuration from the NX controller:
 > Profile & Associated Policies

🕨 RF Domain

How MINT Level 2 works

• Access Points on the Remote RF Domain are « level 2 » adopted by NX controller

3 The access points establish a *Level 1 VLAN* neighboring access points at the remote site The access points then elect one of the access points as the *RF Domain Manager*

How MINT Level 2 works

Virtual RF Domain Manager

Wirtual RF Domain Manager should be used for particular cases only:

- ⇒ Where remote RF Domain contains more than 256 high tier APs with no local controller
- ⇒ Where remote RF Domain contains more than 24 single radio access points with no local controller
- ⇒ Where high bandwidth LAN links are existing between Virtual RF Domain manager and remote RF Domain (no WAN links with limited bandwidth)

Number of RF Domains controlled by « Virtual RF Domain Manager » varies by platform model

	VX9000	NX 95XX	NX75XX	NX5500	RFS6000	RFS4000
Multiple RF Domains Manager Capacity	200	200	40	20	5	2

WiNG: tunnel or local bridging mode WLANs ?

Bridging Mode: «Tunnel» or «Local»?

Mote: There is no traffic tunneling support on the NX9000 / NX9500, VX9000 platforms (no dataplane)

Do NOT use same VLAN as locally bridged and tunneled as this will introduce network loops!

MINT Level 1 usage – AP set as Virtual Controller.

AP in Virtual Controller mode

- Single RF Domain
- Local Bridging
- Heterogeneous VC management is supported for 8432 and 8533
- Same AP family management supported for 7522/32/62 and 7612/32/62
- Other APs only same AP model management
- VC redundancy with Dynamic VC feature
- Max 64AP (24 AP with 802.11n APs)
- Level 1 VLAN MiNT links (default)

MINT Level 1 usage – WLAN mode tunnel

Small/Medium Campus architecture – Tunneled / Mixed traffic forwarding

* Recommended values are provided as design guidelines ONLY. Officially supported numbers (check Release Notes) can be different. ** with Dual Radios Access Points ONLY. No more than 256 single radio APs should be deployed in one Level1 MiNT domain

MINT Level 1 usage – Small Campus architecture

Small/Medium Campus architecture – Local Bridging

* Recommended values are provided as design guidelines ONLY. Officially supported numbers (check Release Notes) can be different.

* with Dual Radios Access Points ONLY. No more than 256 single radio APs should be deployed in one Level1 MiNT domain

MINT L2 usage – Multi Site Centralized deproyment

MINT L2 usage – Multi Site centralized deployment variation

APs can be in same network as NOC controller

MINT Level 2 usage – Multi Site Hierarchical Management

Multi Site Hierarchical Management with Site Controllers

A Site Controller <u>CANNOT</u> adopt other Controllers and itself be adopted AAP licenses are used to adopt both Access Points and Site Controllers

2.2 WiNG 5 Architecture with remote sites over unsecured network

2.2a WiNG 5 Architecture with remote sites over unsecured network

WiNG 5 Architecture with remote sites & traffic tunneling^{2.3}

WiNG Quick Start Guide Part 2 – Configuration Steps

Understanding WiNG 5 Concepts and Configuring the main Features

- WiNG 5 Key Concepts
- DHCP Server (Distributed)
- DHCP Server (Centralized)
- Provisioning Policy
- WLAN with PSK security
- WLAN with 802.1x Authentication (Internal RADIUS)
- Captive Portal (Centralized)
- Captive Portal (Distributed)
- Captive Portal (MAC Registration)
- Level 2 MiNT architecture
- AutolPsec Secure
- L2TPv3 Tunneling
- Clustering
- Mesh Legacy
- MeshConnex ™
- Solution Steps for configuring most used features.
 For advanced configurations, please refer to the How-To-Guide documents available for each topic.

- Key Concepts
 - WiNG 5 provides a *hierarchical configuration model* that allows enterprises to manage large number of devices from a single point of management.
 - Each physical device (AP, RFS or NX or VX) is assigned to one *RF-Domain* and one *Profile*

Configuring a DHCP Service (Distributed on Access Point)

* <u>Note</u>: In this configuration, the DHCP service for the IP Subnet can be « running » on a device if this device owns a Virtual Interface in this IP Subnet.

Configuring a DHCP Service (Centralized on RFS)

Auto Provisioning Policy (aka Adoption Rules)

WLAN with PSK security

WLAN with Internal RADIUS Authentication (EAP-PEAP)

Captive Portal (Distributed) - RADIUS Authentication

Access Point (Device or Profile)		adopted by	VX or NX platform
Interface > Rad Wireless LAN Basic Configuration - Bridging mode = Local - VLAN = x Security - Captive Portal Enable ☑ - Captive Portal Policy =	Jio > WLAN mapping	Services > Captive Portal Captive Portal policy er Mode = Internal (Self) Policy = sss Type = RADIUS Auth	1 AAA policy
6 AP > Services > RADIUS 6 RADIUS Server Policy User Pools = User 1 : login, password RADIUS gr	ser Pools	RADIUS Group Guest group = ☑ Allowed VLAN = x Allowed SSID =	

Captive Portal (Centralized) - RADIUS Authentication

Onboard Self Guest Registration (VX9000 or NX9XX0)

Configuring a level 2 MiNT link architecture

	Statistics
• Check if all access points are assigned to the remote rf domain	• Check which ap is automatically elected « RF Domain Manager »
<u>Statistics > remote-1 > Devices</u> ap1, ap2, ap n should be displayed	<u>Statistics > remote-1 > Health > Domain</u> RF Domain Manager = ap2 (example)

* <u>Note</u>: The « VLAN for Control Traffic » configured in the RF Domain is used to establish level 1 MiNT links between APs in the remote rf domain.

The AP elected « RF Domain Manager » keeps established a single level 2 MiNT link between the remote rf domain and the management platform.

Auto IPSec Secure

Configure IPSec Secure on RFS	2 Configure IPSec Secure on Access Point
<u>Configuration > Device > Controller > Security > AutolPSec Tunnel</u>	Configuration > Device > AP > Security > AutoIPSec Tunnel
- GroupID= your_id_name - Authentication Type = PSK - Authentication Key = 12345678 - IKE version = ikev2 (default)	- GroupID= your_id_name - Authentication Type = PSK - Authentication Key = 12345678 - IKE version = ikev2 (default)

3

	Statistics
Check adoption state	IS
Statistics > Controller >	Adoption > Adopted APs
Status = configured	

Check AutoIPSec Secure

Statistics > Controller > VPN > IKESA

State = established <u>Statistics > RFS > VPN > IPSec</u>

State = VALID / Mode = Tunnel

Configure Adoption with IPSec Secure on Access Point

<u>Configuration > Device > AP > Adoption > Controller Hostnames</u>

- Host (IP address) = rfs-ip-address
- Pool = 1 (default)
- Routing Level = 1 or 2
- IPSec Secure = Yes 🗹

4

Tunneling data via L2TPv3

Establishing a Cluster using CLI and the « join-cluster » command

■ MeshConnex [™]

Configuration / Security 1 Firewall Policy	Denial of Service > Events = Disable All Events
default	Advanced Settings > L2 Stateful Packet Inspection > Disable
Configuration / Wireless 2 MeshConnex Policy Add * Control VLAN should be different from Allowed VLANs	Set a MeshPoint name, set a Mesh Id (same as the MeshPoint name) Beacon Format= mesh-point, Do not check the « Is Root » box ! Configure the Control VLAN * and the Allowed VLANs * Security Tab > set the Security Mode to « PSK », and configure the PreShared Key
Configuration / Profiles 4 Add Root Profile	Interface > Virtual Interfaces (static or DHCP) > Radios > Radio Settings > set RF Mode (2.4/5GHz), Channel= smart, DCS= disable set Radio Placement (indoor/outdoor) WI AN Mapping/Mesh Mapping Tab > Assign the MeshPoint to the radio
Assign then the Root Profile to the Root AP(s)	MeshPoint > Add and Select the MeshConnex policy > Settings > is Root= True, Monitor Primary Port Link= Enable ☑ Path Method= uniform
5 Add Non Root Profile	Interface > Virtual Interfaces (static or DHCP) > Radios > Radio Settings > set RF Mode (2.4/5GHz), Channel= smart, DCS= disable set Radio Placement (indoor/outdoor) WLAN Mapping/Mesh Mapping Tab > Assign the MeshPoint to the radio
Assign the Non-Root Profile to the Non-Root AP(s)	MeshPoint > Add and Select the MeshConnex policy > Settings > is Root= False Path Method= uniform Advanced > Miscellaneous > RF Domain Manager Capable= No
After commiting and saving, check if the configuration	is correctly pushed (show Running Configuration - CL) or GUI) – Then unplug and deploy non-root MeshPoints
Statistics 6 Verification	Select the RE Domain > Statistics > MechDoint > Select MechDoint name > MCY Logical View

WiNG 5 Quick Start Guide Part 3 – Firmware Upgrades

Firmware Upgrades – Local Deployments

Firmware Upgrade – NOC Deployments

Appendix – Feature Matrix

Controller Feature Matrix

Controller Type	Max Access Points (NOC Deployments)	Max Access Points (Campus deployments)	MiNT Tunneling	L2TPv3 Tunneling	Backplane for data tunneling
VX 9000	25,600	4,096	Not Supported	Not Supported	Not supported
NX 9500, NX9600	10,240	4,096	Not Supported	Not Supported	Not supported
NX9510, NX9610	10,240	4,096	4,096 tunnels	16,383 tunnels	Up to 40Gbps firewall throughput Up to 30Gbps HW crypto throughput
NX75XX	2,048	2,048	1,024 tunnels	2,048 tunnels	Up to 20Gbps firewall throughput Up to 8Gbps HW crypto throughput
NX5500	512	512	256 tunnels	255 tunnels	Up to 4Gbps firewall throughput Up to 1.4Gbps HW crypto throughput
RFS 6000 (EOS)	256	256	48 tunnels	511 Tunnels	Up to 2Gbps firewall throughput
RFS 4000	144	36	36 tunnels	63 Tunnels	1Gbps firewall throughput

Controller Feature Matrix

Controller	Number of AP	Tunneling support	VM based	As NOC controller	As Campus controller	As Site controller
VX9000	25,600 (from 5.9.1)	No	Yes (VMWare, Hyper-V, XenServer, Amazon EC2, KVM)	Yes	Yes	Yes
NX9600	10,240	No	No	Yes	Yes	No
NX9610	10,240	Yes	No	Yes	Yes	No
NX9500	10,240	No	No	Yes	Yes	No
NX9510	10,240	Yes	No	Yes	Yes	No
NX75X0	2,048	Yes	No	Yes	Yes	Yes
NX5500	512	Yes	No	Maybe	Yes	Yes
RFS4000	144	Yes	No	No	No	Yes

Access Points Use Cases

АР Туре	Voice	High Density of clients	MeshConnex	Client Bridge	Location Based Services	WIPS
AP6522-6562	YES only radio 2	No	YES	Yes	Yes poor perf	Yes
AP7502	Yes	No	Yes (2.4GHz only)	No	No	No
AP7522	Yes	Yes	Yes	Yes	Yes	Yes with 2 radios
AP7532	Yes	Yes	Yes	Yes	Yes	Yes with 2 radios
AP7562	Yes	Yes	Yes	Yes	Yes	Yes with 2 radios
AP7602	Maybe	No	No	Yes	5.9.1	Yes
AP7622	No	No	No	Yes	5.9.1	Yes
AP7612	Yes	No	No	No	5.9.2	5.9.2
AP7632	Yes	Yes	No	No	5.9.2	5.9.2
AP7662	Yes	Yes	No	No	5.9.2	5.9.2
AP8432	Yes	Yes	No	No	Yes	Yes (borrow radio 1 or use radioshare)
AP8533	Yes	Yes	No	No	Yes	Yes (dedicated 3 rd radio)

WWW.EXTREMENETWORKS.COM

MOTOROLA, MOTO, MOTOROLA SOLUTIONS and the Stylized M Logo are trademarks or registere and are used under license. All other trademarks are the property of their respective owners.