

Confidential. Not For Distribution Without Permission.

Python Scripting

with XMC 8.1.3

For any NOS Products
 Version Comments

Stéphane Grosjean 0.1 Initial Release – October 2017

Stéphane Grosjean 0.5 Creation of example scripts for Automated Campus, various fixes

Stéphane Grosjean 0.9 Update with 8.1.2 changes + NBI GraphQL

Stéphane Grosjean 0.91 Ending prompt of cli_output is now removed automatically

Stéphane Grosjean 0.92 Fixing some typos in text and code examples

Stéphane Grosjean 0.93 Adding 3rd parameter info for emc_cli.send()

Stéphane Grosjean 0.94 Fixing the cli output as 8.1.3 changes it

Stéphane Grosjean

Principal SE, EMEA Southern, France
stgrosjean@extremenetworks.com

mailto:stgrosjean@extremenetworks.com

Confidential. Not For Distribution Without Permission.

Table of Contents

1 Disclaimer ... 3

1.1 References .. 3

2 Introduction ... 4

2.1 EMC_VARS .. 5

2.2 EMC_CLI .. 7

2.3 EMC_NBI ... 10

2.3.1 Queries .. 11

2.3.2 Query Examples .. 12

3 Enhancing the Default Python Engine .. 20

3.1 Default Location for Scripts... 20

3.2 Adding a User Script .. 20

3.3 Legacy Python/TCL Scripts .. 20

3.4 Python Modules Shipped with XMC ... 21

3.5 System Path and Precedence .. 21

3.6 Installing a Library ... 22

3.7 Using JSONRPC Capability for EXOS .. 22

3.8 Using RESTConf Capability for EXOS ... 24

4 Examples .. 28

4.1 Getting Started .. 28

4.2 Adding User-Input Variables to a Script .. 33

4.3 Creating a L2VSN Provisioning Script .. 35

4.3.1 Fabric Attach L2VSN Script .. 35

4.3.2 Fabric Connect L2VSN Script ... 41

P y t h o n w i t h X M C

P a g e | 3

Confidential. Not For Distribution Without Permission. October 15th 2017

1 Disclaimer

This document is internal only and shouldn’t be used externally by any means. This is not an
official document from Extreme Networks and cannot be used to validate any design, feature or
scalability. This is an informational document only.

1.1 References

The following documents were used extensively in the preparation of this document:

Python jsonrpc.py & restconf.py class by Dave Hammers
Long list of emails with Lou

P y t h o n w i t h X M C

P a g e | 4

Confidential. Not For Distribution Without Permission. October 15th 2017

2 Introduction

Starting with XMC 8.0.4.54, a new language is available for scripting: Python. Its inclusion doesn’t
mean the previous scripting programming language, TCL, is being replaced, but with Python new
possibilities are made available for the users.

The different options for scripting in XMC are now the following:

- TCL scripting
- JSONRPC scripting

o CLI method: sends CLI commands over HTTPS to an EXOS-capable switch (EXOS
21.1 or later)

o Python method: execute a Python script remotely to an EXOS-capable switch
(EXOS 21.1 or later)

- Python Scripting

Note: ISW products do support JSONRPC too, but they are using a different method, not
compatible with EXOS. At the moment, there’s no plan to add that method to XMC.

The Python Engine embedded in XMC 8.0.4 is running python scripts inside the java jvm (XMC is
currently using Jython). As this is not a full blown CPython, some external python modules that
you would like to add may not work. The version used is Jython 2.7.6.

Note: There’s a plan to move the Python Engine external to XMC and use CPython, running the
latest Python 2.7 version. This is more of a Plan of Intent at the moment, most likely for the XMC
9.x timeframe.

For the most part, from the XMC Scripting GUI you can simply create a new script, selecting
Python as the programming language, and write it just like you would have normally. What XMC
Python Engine brings you is a powerful set of tools to interact with XMC environment and
variables, and run against devices selected from XMC topology view, for example. You have the
possibility to add home-made features to XMC, in a way.

The three main global objects available to the user are the following:

- emc_vars
- emc_cli
- emc_nbi

P y t h o n w i t h X M C

P a g e | 5

Confidential. Not For Distribution Without Permission. October 15th 2017

2.1 EMC_VARS

The emc_vars global object is a python dictionary containing all the global variables previously
accessible to TCL scripts. So this is the same variables used with TCL, and as such the data
returned may not always been the most appropriate for Python (string instead of list, for
example). They are accessible for convenience, but the goal with the Python engine will be to use
the coming NBI. The following are all the variables available:

serverIP server IP address

serverVersion server version

serverName server host name

time current time at server (HH:mm:ss z)

date current date at server (yyyy-MM-dd)

userName EMC user name

userDomain EMC user domain name

auditLogEnabled true/false if audit log is supported

scriptTimeout max script timeout in secs

scriptOwner scripts owner

deviceName DNS name of selected device

deviceIP IP address of the selected device

deviceId device DB ID

deviceLogin login user for the selected device

devicePwd logn password for the selected device

deviceSoftwareVer software image version number on the device

deviceType device type of the selected device

deviceSysOid device system object id

deviceVR device virtual router name

cliPort telnet/ssh port

isExos true/false. Is this device an EXOS device?

family device family name

vendor vendor name

deviceASN AS number of the selected device

port selected ports

vrName selected port(s) VR name

ports all device ports

accessPorts all ports which have config role access

interSwitchPorts all ports which have config role interswitch

managementPorts all ports which have config role management

As this is a python dictionary, a script can simply read the value of any of them, when required,
just like any typical python dictionary. Below is an example:

myVar = emc_vars["deviceIP"]

P y t h o n w i t h X M C

P a g e | 6

Confidential. Not For Distribution Without Permission. October 15th 2017

Many of these variables are self-explanatory. One variable, however, requires a bit more of
attention: port.

When used in a script, it will prompt the user to select some ports that will be used by the script.
This variable will return a string containing all the ports, comma-separated. For Python scripting,
manipulating a list seems more adequate, so you may want to add a function similar to the
following in your code:

transforms a string into a list and returns it.

def string2list(inputString):

 return inputString.split(",")

It is worth to note that the variable isExos is a legacy variable and there’s no plan to add other
similar variable for other NOS. The plan, going forward, is to use device data that will come from
the NBI.

All the device<X> variables are certainly the most useful for script development. The
deviceLogin and devicePwd provides the credential to access the switch: they are known
from the CLI Profile associated to the device.

Note: By default, every script run in the context of a device, so executing the same script against
multiple devices with different CLI credentials shouldn’t be an issue. If the script is correctly coded,
it should also be able to handle different NOS and CLI syntax.

The deviceSoftwareVer variable will not return the patch level version of an EXOS switch,
only the first four digits (ie: 22.4.1.4). Some variables may be left blank.

P y t h o n w i t h X M C

P a g e | 7

Confidential. Not For Distribution Without Permission. October 15th 2017

2.2 EMC_CLI

The emc_cli is a Python object used to execute CLI commands. This object uses the same internal
CLI session objects than TCL.

This object is used a bit differently with Python: a Boolean allows to choose to wait for
system/shell prompt, or not. Setting the Boolean value to False, no cli output is returned. The
Boolean value is optional and defaults to True. A third optional parameter is a timer, in seconds,
to wait for information if needed.

Several methods are available with this python object, to retrieve several information from the
CLI command execution:

- isSucces(): boolean to represent outcome of the last command
- getError(): if it fails, contains the error as a string
- getOutput(): output captured/echoed back from the device (including cli command

prompt) as a string

The isSuccess() doesn’t tell if the CLI command was successful or not, but if the send() has
been completed correctly. Whatever is the result of that CLI command is left to the script to
handle, by analyzing the CLI output.

Below is an example:

executes a show vlan command and prints the output

cli_results = emc_cli.send("show vlan")

cli_output = cli_results.getOutput()

print cli_output

creates a dummy UPM profile

emc_cli.send("create upm profile \"Test\"", False)

emc_cli.send("Test", False)

cli_results = emc_cli.send(".")

example of using timer – waiting for 3 seconds

emc_cli.send("show config", False, 3)

In that example, EXOS is the NOS. However, this is not restricted to that NOS, and any other NOS
is eligible, as long as the device is accessible from XMC with a correct CLI Profile.

The emc_cli object will connect to the device using either telnet or ssh, so any device from any
vendor is accessible. However, the login banners and sub-prompts can vary a lot from one vendor
to another. EMC has a list of many CLI rules to access the device.

P y t h o n w i t h X M C

P a g e | 8

Confidential. Not For Distribution Without Permission. October 15th 2017

Starting with XMC 8.1.2, you can customize the CLI rules or the regular expressions for prompt
detection, by creating a file named myCLIRules.xml, located in the same directory than the
CLIRules.xml file (caution, names are case sensitive):

/usr/local/Extreme_Networks/NetSight/appdata/scripting/

This file should be divided into sections containing regular expressions per vendor, in a similar
fashion than the CLIRules.xml file. Typically, BOSS and VOSS access uses this file as well.

Note: CLI scripting for BOSS and VOSS is very inconsistent. Those devices have all kinds of different
banners during logins and subprompts that are very different. Make sure that the CLI profile for
those devices is correct, emc_cli relies on the CLI profile that is set for that device. By default, it
will try to use the regular expressions defined in CLIRules.xml under the "Avaya" section, but
not all commands and/or prompts have been added so if your CLI profile is correct and the script
fails this might be the reason.

When you create the myCLIRules.xml file, the following logic happens when XMC tries to
connect to a device:

- Checks if myCLIRules.xml exists. If it does, use the cliRule name in it if it exists.
- Checks if cliRule name exists in CLIRules.xml, if yes use that one.
- Finally, use the default rule name of “*”

The cliRule name normally will come from Vendor Profiles which each device (family, subfamily
or device type) will or should have a property called cliRuleFileName (name is misleading, it’s
really the cliRuleName, not a file name).

Note: The cliRuleName can also be set dynamically from Python by invoking
emc_cli.setCliRule.
For example:
must be called before using emc_cli.send

emc_cli.setCliRule("ruleName")

P y t h o n w i t h X M C

P a g e | 9

Confidential. Not For Distribution Without Permission. October 15th 2017

Tip: If a specific command prompts the shell for an input, breaking a script to execute properly,
you can add to myCLIRules.xml that prompt, for the correct platform, and specify the desired
answer to it. For example:

<CommandPrompt command=".*">
 <defaultPrompt>
 <prompt>^Do you want to continue \(y/n\)</prompt>
 <reply>y</reply>
 </defaultPrompt>
</CommandPrompt>

The CLI output returned by emc_cli.send() is a string containing also the CLI command used
(first line).

Note: Since XMC 8.0.4 and up to XMC 8.1.1, the string returned was also including the trailing CLI
prompt. XMC 8.1.2 removed it, and XMC 8.1.3 brings it back. So existing Python scripts may need
to be updated.

One way to get rid of that extra information is to create a function, similar to this one:

transforms the string into a list, removes first and last entries

if running with XMC 8.1.1 or before, or just first line,

returns the result as a string keeping the carriage return

returns None if anything goes wrong

def getOutputOnly(inputStrings):

 try:

 version = ''.join(emc_vars["serverVersion"].split('.')[:3])

 pivotVersion = ''.join("8.1.2".split('.'))

 if int(version) == int(pivotVersion):

 lines = inputStrings.splitlines()[1:]

 else:

 lines = inputStrings.splitlines()[1:-1]

 return '\n'.join(lines)

 except:

 return None

P y t h o n w i t h X M C

P a g e | 10

Confidential. Not For Distribution Without Permission. October 15th 2017

2.3 EMC_NBI

The emc_nbi global object is a client API into XMC northbound interface. With this API, Python
scripts have access to virtually all the data XMC manages and it’s powered by GraphQL-based
queries and returns the data as json, making it a very flexible and powerful solution for advanced
scripting.

Note: GraphQL is a query language developed by Facebook, before becoming public in 2015. Just
like REST, it accesses data via an HTTP GET and receives the outcome in JSON format. But one
fundamental difference is that using GraphQL, the client can receive only the data it needs, not
all the data available. To manipulate large amount of data in databases, this can be very
important and way more efficient.

The GraphQL query language becomes central to XMC interaction with the devices, scripting and
workflows. It can be accessed either internally via a Python script, or externally as well to interact
with any third-party application.

P y t h o n w i t h X M C

P a g e | 11

Confidential. Not For Distribution Without Permission. October 15th 2017

2.3.1 Queries

Using the GraphQL NBI requires to create a query to retrieve an information. Just like REST, any
query is well-defined and the programmer knows precisely the format of the query.

For ease of programming, XMC 8.1.2 integrates GraphiQL, an interface to allow the user to test
queries and see the output. It can be accessed using the following url on a given XMC server:
https://<xmc server IP>:8443/nbi/graphiql/index.html

A query is a read-only operation, and this is the only operation supported as of XMC 8.1.2. In a
future release of XMC, mutation (write) is planned to be supported as well.

A query is a string, that can be formatted as a JSON object. Central to a query are the fields. Each
field is defined in a schema that is dynamically created by the runtime. Some arguments may be
used with some fields.

P y t h o n w i t h X M C

P a g e | 12

Confidential. Not For Distribution Without Permission. October 15th 2017

The top level field that is used for the various entry point is ExtremeApi. From there, the
subsystem that can be used for queries are:

ExtremeApi {

 accessControl,

 administration,

 network,

 policy,

 wireless,

 workflows

}

The GraphQL schema description can be accessed ever as an IDL file or a JSON file, using the
following urls on an XMC server:

https://<xmc-ip-address>:8443/nbi/graphql/schema.idl
https://<xmc-ip-address>:8443/nbi/graphql/schema.json

2.3.2 Query Examples

Following are some examples, using Python executed from XMC, to send a query to the NBI and
use the returned information.

From XMC, if we naviguate to the Network -> Devices menu and select the Sites view, we can see
the following tree view on our server:

Fields

device(ip: “192.168.1.20”) {
 serialNumber

 sysContact

}

Argument

https://172.16.10.210:8443/nbi/graphql/schema.idl

P y t h o n w i t h X M C

P a g e | 13

Confidential. Not For Distribution Without Permission. October 15th 2017

Let’s query XMC about that switch in the /World/Test site.

A GraphQL query is a string. Using GraphiQL, we can find and test queries. Let’s query the name
and vid of any VLAN on that switch. Here’s a very simple Python script that we can run from XMC.

nbiQuery = '''

{

 network {

 siteByLocation(location: "/World/Test") {

 vlans {

 name

 vid

 }

 }

 }

}

'''

result = emc_nbi.query(nbiQuery)

print result

If we execute it, here’s the result:

P y t h o n w i t h X M C

P a g e | 14

Confidential. Not For Distribution Without Permission. October 15th 2017

Note: As of XMC 8.1.3, it is still necessary to run a script along with a device, even if that script is
not in relation to a device. This should be fixed in a future release of XMC.

Here are a few other examples, browsing the GraphiQL url to find more possibilities.

P y t h o n w i t h X M C

P a g e | 15

Confidential. Not For Distribution Without Permission. October 15th 2017

nbiQuery = '''

{

 network {

 devices {

 firmware

 baseMac

 sysUpTime

 ip

 deviceName

 }

 }

}

'''

result = emc_nbi.query(nbiQuery)

for item in result['network']['devices']:

 print item['ip'] + ': \t' + item['deviceName'] + ' \t' + item['firmware'] + ' \t'

+ str(item['sysUpTime'])

We can also query multiple information from ExtremeApi at the same time.

nbiQuery = '''

{

 accessControl {

 appliances {

 ipAddress

 displayName

 },

 engineStatus

 },

 network {

 siteByLocation(location: "/World/Extreme Fabric Connect") {

 ospf

 vxlan

 },

 devices {

 sysName

 }

 }

}

P y t h o n w i t h X M C

P a g e | 16

Confidential. Not For Distribution Without Permission. October 15th 2017

'''

result = emc_nbi.query(nbiQuery)

for item in result['accessControl']['appliances']:

 print item['ipAddress'] + ' \t' + item['displayName']

for item in result['network']['devices']:

 print item['sysName']

print result['accessControl']['engineStatus']

2.3.2.1 Using templates

Some of the queries require arguments. An elegant way to manage them in a Python script is to
use templates.

We can build a Python class, so that the client can focus only on the API and not the query.

from string import Template

class Device:

 def __init__(self,ip=None):

 self.ip = ip

 if ip == None:

 self.ip = emc_vars["deviceIP"]

 def get_facts(self):

 query_tpl='''query ExtremeApi {

 network {

 device(ip:"${deviceIP}") {

 assetTag

 baseMac

 bootProm

 chassisId

 chassisType

 deviceDisplayFamily

 deviceName

 firmware

 ip

 name

 nickName

 policyDomain

 snmpContext

 sysContact

 sysLocation

 sysName

 sysObjectId

 sysUpTime

 maintenance

 unknown

 up

 upSnmpError

 }

P y t h o n w i t h X M C

P a g e | 17

Confidential. Not For Distribution Without Permission. October 15th 2017

 }

 }'''

 query = Template(query_tpl).safe_substitute(dict(deviceIP=self.ip))

 response = emc_nbi.query(query);

 if response:

 return response["network"]["device"]

 else:

 return None

device = Device("192.168.254.170");

results = device.get_facts();

print results

We can leverage that by creating a separate module with our class, that we may then import in
future scripts.

Let’s save the class as a python script, and put it into the following location:

/usr/local/Extreme_Networks/NetSight/appdata/scripting/extensions

Then, we can call it from any Python script. Assuming our file is called MyDevice.py, here’s an
example of how to use it:

from MyDevice import Device

import MyDevice

MyDevice.emc_nbi = emc_nbi

device = Device("192.168.254.170");

results = device.get_facts();

print results

Because the emc_ variables are scoped to the module and are not global variables, we have to
export these to the module that need/use it. This is the reason why we have to add the line:
MyDevice.emc_nbi = emc_nbi.

2.3.2.2 Using External Scripts

Let’s present a last example of accessing XMC via GraphQL, but this time from an external
program.

This python script is written under a Windows 7 system, with Python 3.5.2.

P y t h o n w i t h X M C

P a g e | 18

Confidential. Not For Distribution Without Permission. October 15th 2017

#!/usr/bin/env python

import json

import requests

from requests import Request, Session

from requests.auth import HTTPBasicAuth

from requests.packages.urllib3.exceptions import InsecureRequestWarning

import argparse

import getpass

def get_params():

 parser = argparse.ArgumentParser(prog = 'nbi')

 parser.add_argument('-u', '--username',

 help='Login username for the remote system')

 parser.add_argument('-p', '--password',

 help='Login password for the remote system',

 default='')

 parser.add_argument('-i', '--ip',

 help='IP of the XMC 8.1.2+ server')

 args = parser.parse_args()

 return args

args = get_params()

if args.username is None:

 # prompt for username

 args.username = input('Enter remote system username: ')

 # also get password

 args.password = getpass.getpass('Remote system password: ')

if args.ip is None:

 #prompt for XMC's IP

 args.ip = input('Enter IP of the XMC server: ')

To disable SSL certificate verification

requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

prepare HTTPs session

session = Session()

session.verify = False

session.timeout = 10

session.auth = (args.username, args.password)

session.headers.update(

 { 'Accept': 'application/json',

 'Content-type': 'application/json',

 'Cache-Control': 'no-cache',

 }

)

define XMC-NBI query

nbiQuery = '{ network{ devices { ip nickName } } }'

execute NBI call

P y t h o n w i t h X M C

P a g e | 19

Confidential. Not For Distribution Without Permission. October 15th 2017

nbiUrl = 'https://' + args.ip + ':8443/nbi/graphql'

response = session.post(nbiUrl, json= {'query': nbiQuery})

if response.status_code != 200:

 print('ERROR: HTTP ' + response.reason + '(' + str(response.status_code)

+ ')')

else:

 # convert JSON string to a data structure

 inbound_data = json.loads(response.text)

 for device in inbound_data['data']['network']['devices']:

 print(device['ip'] + ' \t' + device['nickName'])

Here’s the output of such script, running from a laptop:

C:\05 - Trainings_Guides\Python with XMC>python external-nbi.py

Enter remote system username: root

Remote system password:

Enter IP of the XMC server: 192.168.20.155

192.168.254.10 oob1

192.168.254.3 COEUR2

192.168.254.172 Leaf-1

192.168.254.170 COEURLAB1

192.168.254.173 SPINE1

192.168.20.250 HWC.training-enterasys.training.fr

192.168.254.2 COEUR1

192.168.20.154 engine1

192.168.254.108 HP-51XX

192.168.20.153 Analyics Beta

192.168.254.111 BCB2

192.168.254.109 BEB3

192.168.254.110 BCB1

192.168.254.113 BEB2

192.168.254.112 BEB1

192.168.254.114

192.168.30.114 VX9-NSIGHT

192.168.254.130 X440G2-12p-10G4

P y t h o n w i t h X M C

P a g e | 20

Confidential. Not For Distribution Without Permission. October 15th 2017

3 Enhancing the Default Python Engine

Starting with XMC 8.0.4, the python engine runs python in java jvm, using Jython 2.7.6. Most, if
not all, of the standard Python 2.7 library should be available, but if you need to add a new
module, this can be accomplished.

Since XMC 8.1.2, the directory structure has changed for the python modules location, both for
the default ones and users-based. Also, the requests module and pip utility are installed by
default.

3.1 Default Location for Scripts

When a user creates or modify a script under the XMC UI, the script is saved in the following
location:

/usr/local/Extreme_Networks/NetSight/appdata/scripting/overrides

3.2 Adding a User Script

To add a user-created script, simply copy the python script to this directory:

/usr/local/Extreme_Networks/NetSight/appdata/scripting/extensions

From the embedded python scripts, simply import the module.

Note: This directory doesn’t exist by default. When created, it is automatically added to the
system path and so becomes available for importing.

3.3 Legacy Python/TCL Scripts

Legacy Python/TCL scripts are shipped with XMC under the following location:

/usr/local/Extreme_Networks/NetSight/appdata/scripting/bundled_scripts

/xml/

P y t h o n w i t h X M C

P a g e | 21

Confidential. Not For Distribution Without Permission. October 15th 2017

3.4 Python Modules Shipped with XMC

With XMC 8.1.2, all the modules shipped with XMC are located into the following location:

/usr/local/Extreme_Networks/NetSight/appdata/scripting/system

This is where default jsonrpc.py and restconf.py are located.

3.5 System Path and Precedence

All the following paths are automatically added to the system path:

appdata/scripting/overrides

appdata/scripting/extensions

appdata/scripting/system

appdata/scripting/

NetSight/jython/Lib

NetSight/jython/Lib/site-packages

NetSight/jython

If identical python modules are found, the expected precedence is that overrides would be
used first.

P y t h o n w i t h X M C

P a g e | 22

Confidential. Not For Distribution Without Permission. October 15th 2017

3.6 Installing a Library

To install a library, the easiest way is to use pip. Starting with XMC 8.1.2, pip utility is part of the
default XMC server installation. Using the pip utility should be done that way:

cd /usr/local/Extreme_Networks/NetSight/jython/bin

export JAVA_HOME=/usr/local/Extreme_Networks/NetSight/java

./pip install <module>

3.7 Using JSONRPC Capability for EXOS

From the default XMC Python Engine, you can only access switches from telnet or ssh. If you are
planning to use scripts with switches running EXOS 21.1 (or later), a great alternative is to use,
instead, JSONRPC.

Starting with XMC 8.1.2, jsonrpc.py (version 2.0.0.3) is installed by default. You can simply use it
from any Python script. You can check for a newer version on Extreme Networks’ GitHub:

https://github.com/extremenetworks/EXOS_Apps/blob/master/JSONRPC/jsonrpc.py

As an example, a generic python script using jsonrpc would look like:

from jsonrpc import JsonRPC

def main():

 # open a session with the switch

 jsonrpc = JsonRPC(emc_vars["deviceIP"], username=emc_vars["deviceLogin"],

password=emc_vars["devicePwd"])

 # send a CLI command and save the result in a variable

 response = jsonrpc.cli('show vlan')

 print response

main()

A major benefit of using JSONRPC is that for a common CLI command, both the typical CLI Output
will be sent back, but also the JSON equivalent of that command. This part is the same output
than running in command line the cli2json.py python script for that CLI command.

Note: The cli2json.py script is part of EXOS since version 15.6.

https://github.com/extremenetworks/EXOS_Apps/blob/master/JSONRPC/jsonrpc.py

P y t h o n w i t h X M C

P a g e | 23

Confidential. Not For Distribution Without Permission. October 15th 2017

To use the json output, you need to know what key to use. But for a same command, this will
always be the same key, so a script is easy to write. No more screen scraping, for most of the
commands.

Below is an example, to easily retrieve VLAN tag and IP address of the VLANs on a switch.

from jsonrpc import JsonRPC

jsonrpc = JsonRPC(emc_vars["deviceIP"], username=emc_vars["deviceLogin"],

password=emc_vars["devicePwd"])

response = jsonrpc.cli('show vlan')

data = response.get('result')

for row in data:

 vlaninfo = row.get('vlanProc')

 if vlaninfo:

 print "vlanId: ", vlaninfo.get('tag'), "\tIP Address: ",

vlaninfo.get('ipAddress')

The important key to know is “vlanProc”. If you look at the various information in it, looking at a
global print of the response, you can find what you need and just get it. The result of this script,
when we run the script on a switch (or VM), is shown below.

P y t h o n w i t h X M C

P a g e | 24

Confidential. Not For Distribution Without Permission. October 15th 2017

Note: This example only illustrates the cli method. The jsonrpc.py class also provides way to use

python method and runscript method. The runscript method is about executing a Python script on

a remote switch, when the python script is local to the server. The python method is similar but

runs under the expy context, just like Python Apps.

3.8 Using RESTConf Capability for EXOS

With XMC 8.1.2, a RESTConf python class is provided by default to create python scripts using

that API. The version included with XMC 8.1.2 is version 1.1.0.3. You can look for a newer version

on Extreme Networks’ Github:

https://github.com/extremenetworks/EXOS_Apps/blob/master/REST/examples/restconf.py

EXOS supports RESTCONF natively starting with release 22.4, following the Openconfig model. It

can be backported down to EXOS 22.1, by installing the restconf.pyz module. At the time of

writing of this document, the latest version is restconf_xos_1.0.1.30.pyz, available here:

https://github.com/extremenetworks/EXOS_Apps/tree/master/REST/

Note: How to install the restconf module? Several ways are possible. Either you directly reference

the url, or you download it to your tftp server.
download url

https://github.com/extremenetworks/EXOS_Apps/blob/master/REST/download

s/restconf_xos_1.0.1.30.lst

or
download url tftp://<ip>/restconf_xos_1.0.1.30.lst

or using Chalet.

Make sure DNS is correctly configured on the switch to make the url work.
config dns-client add name-server 192.168.20.83 vr VR-Mgmt

Note: With EXOS 22.5, .lst file will be supported with the download image CLI command.
download image <ip> restconf_xos_1.0.1.30.lst

Below is an example of how to retrieve the VLAN list using RESTConf. The information we are

looking for is related to the VLANs. This is the data model we want to browse: openconfig-

vlan:vlans.

https://github.com/extremenetworks/EXOS_Apps/blob/master/REST/examples/restconf.py
https://github.com/extremenetworks/EXOS_Apps/tree/master/REST/
https://github.com/extremenetworks/EXOS_Apps/blob/master/REST/downloads/restconf_xos_1.0.1.30.lst
https://github.com/extremenetworks/EXOS_Apps/blob/master/REST/downloads/restconf_xos_1.0.1.30.lst

P y t h o n w i t h X M C

P a g e | 25

Confidential. Not For Distribution Without Permission. October 15th 2017

We can read it directly from the switch using any browser, by browsing the following url:

http://<switch IP>/rest/restconf/data/openconfig-vlan:vlans

P y t h o n w i t h X M C

P a g e | 26

Confidential. Not For Distribution Without Permission. October 15th 2017

Note: You need to know what url to use. To have a list of all the yang data models supported, you

can browse the following url, as defined by RFC 8040:

http://<switch IP>/rest/restconf/data/ietf-yang-library:modules-state

Let’s use a Python script to list all the VLANs.

import json

from restconf import Restconf

def get_data(restobj, url):

 result = restobj.get(url)

 return result.json()

if emc_vars["isExos"]:

 restconf = Restconf(emc_vars["deviceIP"], emc_vars["deviceLogin"],

emc_vars["devicePwd"])

 obj = get_data(restconf, '/data/openconfig-vlan:vlans')

 data = obj.get('openconfig-vlan:vlans')

 vlans = data.get('vlan')

 if vlans:

 for row in vlans:

 vlan = row.get("vlan-id")

 if vlan:

 print "vlanId: ", vlan

else:

 print "Need an EXOS switch running 22.4 or later"

P y t h o n w i t h X M C

P a g e | 27

Confidential. Not For Distribution Without Permission. October 15th 2017

We can see the result on a switch running EXOS 22.4.1.4-patch1-2:

Note: All these examples are using HTTP, for simplicity. They work also with HTTPS, as long as SSL

has been configured and enabled on the switch.

P y t h o n w i t h X M C

P a g e | 28

Confidential. Not For Distribution Without Permission. October 15th 2017

4 Examples

Starting with XMC 8.0.4, Python scripting is available for scripting. With XMC 8.1.2, some
enhancements have been made, such as the metadata fields.

4.1 Getting Started

From XMC GUI, you access the Scripting Engine via the following menus: Tasks -> Scripts.

A list of existing scripts is displayed, and you simply create a new one by clicking on the Add
button. You have a choice for the type of script you want to create: simply select Python.

After selecting Python, the editor is launched and you can start writing your script.

P y t h o n w i t h X M C

P a g e | 29

Confidential. Not For Distribution Without Permission. October 15th 2017

Note: You can write your Python script outside of the XMC embedded editor, as long as you place
the resulting script into the following location:
/usr/local/Extreme_Networks/NetSight/appdata/scripting/extensions

This directory does not exist by default and must be created.

As an example, we’ll create a very basic script. As you can see, we can simply write down python
code if we don’t need to have different functions.

We need to Save it before running it. Once it is saved, clicking on the “Run” button will guide us
through the different steps.

To start with, we need to select the list of devices we want to run the script against:

P y t h o n w i t h X M C

P a g e | 30

Confidential. Not For Distribution Without Permission. October 15th 2017

Because we have used the emc_vars["port"] variable, we are asked to select a list of ports
from the switch.

We need to select the ports and click the “Add Ports” button for the selection to be effective.
Forgetting to click on “Add Ports” would run the script without any port selected and would raise
an exception.

P y t h o n w i t h X M C

P a g e | 31

Confidential. Not For Distribution Without Permission. October 15th 2017

After a few other steps to choose how and when to run the script (in our case we just run it now
and don’t save it as a task), we can actually execute the script and see the result.

After completion of the script, we see some global information in the Results window. Any print
command that we do is also displayed into that window. It’s worth to note that even without a
print, the CLI output is returned in that window as well.

P y t h o n w i t h X M C

P a g e | 32

Confidential. Not For Distribution Without Permission. October 15th 2017

If we connect to the switch, we have confirmation of the success of the script.

* (Demo) X440G2-24p-10G4.1 # sh vlan

Untagged ports auto-move: On

Name VID Protocol Addr Flags Proto Ports Virtual

 Active router

 /Total

Default 1 -- ANY 0 /0 VR-Default

Mgmt 4095 192.168.254.113/24 ---------------------------- ANY 1 /1 VR-Mgmt

VLAN_0042 42 10.42.0.10 /24 ---------------------------- ANY 1 /2 VR-Default

VLAN_0202 202 10.1.202.2 /24 ---------------------------- ANY 1 /1 VR-Default

VLAN_1234 1234 -- ANY 1 /3 VR-Default

VLAN_1337 1337 -- ANY 2 /3 VR-Default

P y t h o n w i t h X M C

P a g e | 33

Confidential. Not For Distribution Without Permission. October 15th 2017

4.2 Adding User-Input Variables to a Script

As of XMC 8.0.4, the metadata used with TCL are still usable “as is”, even if the syntax is more
TCL-centric than really compliant with Python. But starting with XMC 8.1.2, the MetaData fields
with Python scripting has evolved so that the name field and the value field can be referenced
directly. This is the most appropriate way to use the MetaData starting with XMC 8.1.2.

Note: the legacy “set var name value” syntax is still supported for backward compatibility.

Any interaction with a script has to be defined in-between the MetaData tags.

#@MetaDataStart

…

#@MetaDataEnd

Description can be added, but the most important part is the user-input variable definition. You
need to use the specific following meta data to define a variable that the user will be prompted
to set at execution time of the script.

#@VariableFieldLabel (description = "Enter Tag Type",

type = String,

required = yes,

validValues = [tag,untag],

readOnly = no,

name = "myVar",

value = "42"

)

You can, of course, specify multiple variables if needed by repeating the above definition.

You can specify multiple values in the VariableFieldLabel meta data.

- description: this will be display before the value field
- type: what format of data is expected
- scope: global or device specific. Values can be device or global (default)
- required: yes or no
- validValues: a list of possible values, given inside square brackets and comma-separated
- readOnly: is it allowed to change the variable data? yes or no
- name: the name of the variable to be used in the code
- value: the default value of the variable, that can be overridden by the user

As of XMC 8.1.2, the type of data is string only. Below is a script example, where we ask for the
user to specify if the ports are tagged or not, following our previous example.

P y t h o n w i t h X M C

P a g e | 34

Confidential. Not For Distribution Without Permission. October 15th 2017

When executing the script, we are now being prompt to fill the Tag value, with a default value
already present.

As displayed in the above code, we reference our variable using the emc_vars object, pointing
to the name of the variable: emc_vars["tagtype"].

P y t h o n w i t h X M C

P a g e | 35

Confidential. Not For Distribution Without Permission. October 15th 2017

4.3 Creating a L2VSN Provisioning Script

As Fabric Provisioning for the Automated Campus solution is targeted for XMC 8.2, we can make
use of the scripting capability to provide an elegant temporary integration in XMC.

4.3.1 Fabric Attach L2VSN Script

Let’s write a first script leveraging Fabric attach (FA) on both EXOS and BOSS. We’ll assume FA is
already correctly configured on the FA Server.

Our script will need to connect to either EXOS or BOSS, and make sure we are running the
minimum version necessary on EXOS (22.4) to use FA. Then, we configure the VLAN and the
associated Service ID (I-SID).

This example tries to make a lot of verification to avoid errors, misconfigurations and other
problems, but some may still happen, as it has not been tested a lot. This example is just that: an
example. You can adapt it to better meet your needs.

We first declare some user-input variable for the script. We’ll need to have the VLAN ID, the
Service ID (I-SID), optionally the tag configuration for optional access ports to add to that VLAN.

#@MetaDataStart

#@VariableFieldLabel (description = "VLAN Id <1 - 4094>",

type = string,

required = yes,

readOnly = no,

name = "vid",

value = "1"

)

#@VariableFieldLabel (description = "SERVICE Id <1 - 16 000 000>",

type = string,

required = yes,

readOnly = no

name = "isid",

value = "1000"

)

#@VariableFieldLabel (description = "802.1Q Tagging for the access (UNI) ports",

type = string,

required = no,

validValues = [tag,untag],

readOnly = no,

name = "tagtype",

value = "untag"

)

#@MetaDataEnd

P y t h o n w i t h X M C

P a g e | 36

Confidential. Not For Distribution Without Permission. October 15th 2017

We’ll need to work with json data, so we are going to import that library. We also need some
function to clean the various output from the CLI. We also want to create a generic function to
send CLI commands.

import json

def getOutputOnly(inputStrings):

 try:

 version = ''.join(emc_vars["serverVersion"].split('.')[:3])

 pivotVersion = ''.join("8.1.2".split('.'))

 if int(version) == int(pivotVersion):

 lines = inputStrings.splitlines()[1:]

 else:

 lines = inputStrings.splitlines()[1:-1]

 return '\n'.join(lines)

 except:

 return None

def sendConfigCmds(cmds):

 for cmd in cmds:

 cli_results = emc_cli.send(cmd)

 if cli_results.isSuccess() is False:

 print cli_results.getError()

 return None

 return True

On VOSS and BOSS, a single CLI command gives us the visibility for all the VLANs configured and
the corresponding I-SID if one is present. We are going to use that output to build a dictionary
with both VLAN Id and I-SID as keys. This will be precious information to have to make some
checks.

def getVidVsn(inputString):

 myList = []

 lines = inputString.splitlines()[6:-2]

 for line in lines:

 vid_dict = {}

 parts = line.split()

 if len(parts) > 1:

 vid_dict["vid"] = parts[0]

 vid_dict["isid"] = parts[-1]

 else:

 vid_dict["vid"] = parts[0]

 myList.append(vid_dict)

 return myList

Unfortunately, on EXOS we need two different CLI commands to have the same amount of
information. We can have the list of VLANs with a NSI (I-SID in that context) configured, but it
doesn’t give us all the other VLANs that may exist on the switch. However, a nice thing with EXOS
is that we have access to CLI commands that output json formatted data. These commands are
debug commands and not documented, but freely accessible to anyone. This is not the point of
this document to explain how to find them, so we’ll just use them as is.

P y t h o n w i t h X M C

P a g e | 37

Confidential. Not For Distribution Without Permission. October 15th 2017

def getVlanList(reply):

 reply_json = json.loads(str(reply))

 data = reply_json.get('data')

 vlanList = []

 if data:

 for row in data:

 vlanList.append(row.get('tag'))

 return vlanList

 return None

def exosCheckNSI(vid, isid):

 cli_results = emc_cli.send('debug cfgmgr show next lldp.faMapping')

 reply = getOutputOnly(cli_results.getOutput())

 reply_json = json.loads(str(reply))

 data = reply_json.get("data")

 if data:

 for row in data:

 if isid == row.get("nsi"):

 if vid == row.get("vlanId"):

 return 1,vid

 return 0,row.get("vlanId")

 return 2,isid

The first function creates a list of all the VLANs existing on the switch. We are listing the VLAN
with their VID, not their names.

The second function checks if the Service ID already exists, or not, and if yes if it’s already
associated to a VLAN. In that latter case, we also want to know if that VLAN is the VLAN we want
to use or another one.

Now we are ready to dive into the main part of the script, where we are using all of the
information to actually do something with it. The first part is basic checks to be sure we are
running with correct input data and correct EXOS version, if we are on EXOS. Of course, using FA
we need EXOS 22.4 as a minimum version.

def main():

 createVlan = True

 try:

 ports = emc_vars['port']

 except:

 ports = None

 if int(emc_vars["vid"]) > 4094 or int(emc_vars["vid"]) < 1:

 print "Error: The VLAN Id is out of range"

 return

 if int(emc_vars["isid"]) > 16000000 or int(emc_vars["isid"]) < 1:

 print "Error: The Service Id is out of range"

 return

 familyType = emc_vars['family']

 if emc_vars["isExos"] == "true":

 minExos = ''.join("22.4".split('.'))

 version = ''.join(emc_vars["deviceSoftwareVer"].split('.')[:2])

 if int(minExos) > int(version):

 print "Error: EXOS version must be 22.4 or greater"

 return

P y t h o n w i t h X M C

P a g e | 38

Confidential. Not For Distribution Without Permission. October 15th 2017

The last part determines if we are on EXOS or not. If this is EXOS, we need to be sure to run the
correct minimum version. Everything after means we are on EXOS, and we are using our EXOS
functions to do more checks.

 status,id = exosCheckNSI(emc_vars["vid"], emc_vars["isid"])

 if status == 1:

 createVlan = False

 elif status == 0:

 print "Error: The Service Id {} is already used for VLAN {} on device

{}".format(emc_vars["isid"], id, emc_vars["deviceIP"])

 return

 else:

 cli_results = emc_cli.send('debug cfgmgr show next vlan.vlan')

 if cli_results.isSuccess() is False:

 print cli_results.getError()

 return

 cli_output = cli_results.getOutput()

 cli_output = getOutputOnly(cli_output)

 if cli_output:

 vlanList = getVlanList(cli_output)

 if vlanList:

 if emc_vars["vid"] in vlanList:

 createVlan = False

 else:

 print "Error: No VLAN found on device {}".format(emc_vars["deviceIP"])

 return

 else:

 print "Error: Cannot access VLAN database on device

{}".format(emc_vars["deviceIP"])

 return

Once we have made all the necessary checks, we can start the configuration.

 if createVlan:

 cmds = ["create vlan {}".format(emc_vars["vid"])]

 else:

 cmds = []

 cmds.append("config vlan {} add nsi {}".format(emc_vars["vid"], emc_vars["isid"]))

 if ports is None:

 print "Warning: No access ports have been selected to be part of the new VLAN

{}".format(emc_vars["vid"])

 else:

 cmds.append("config vlan {} add ports {} {}".format(emc_vars["vid"], ports,

emc_vars["tagtype"]))

 result = sendConfigCmds(cmds)

 if result is None:

 return

We have to do similar logic with a BOSS device.

 elif familyType == 'ERS Series':

 emc_cli.send("enable")

 cli_results = emc_cli.send('show vlan i-sid')

 if cli_results.isSuccess() is False:

 print cli_results.getError()

 return

 cli_output = cli_results.getOutput()

P y t h o n w i t h X M C

P a g e | 39

Confidential. Not For Distribution Without Permission. October 15th 2017

 cli_output = getOutputOnly(cli_output)

 if cli_output:

 myList = getVidVsn(cli_output)

 for row in myList:

 if row.get("vid") == emc_vars["vid"]:

 createVlan = False

 if row.get("isid"):

 print "Error: The VLAN {} is already associated to the Service

{}".format(emc_vars["vid"], row.get("isid"))

 return

 if row.get("isid"):

 if row.get("isid") == emc_vars["isid"]:

 print "Error: The Service Id {} is already associated to VLAN

{}".format(emc_vars["isid"], row.get("vid"))

 return

 else:

 print "Error: Cannot access VLAN database on device {}".format(emc_vars["deviceIP"])

 return

 cmds = ["enable", "configure terminal"]

 if createVlan:

 cmds.append("vlan create {} type port".format(emc_vars["vid"]))

 if ports is None:

 print "Warning: No ports have been selected to be part of the new VLAN

{}".format(emc_vars["vid"])

 else:

 cmds.append("vlan configcontrol automatic")

 cmds.append("vlan port {} tagging {}".format(ports, emc_vars["tagtype"]+"All"))

 cmds.append("vlan members add {} {}".format(emc_vars["vid"], ports))

 cmds.append("i-sid {} vlan {}".format(emc_vars["isid"], emc_vars["vid"]))

 result = sendConfigCmds(cmds)

 if result is None:

 return

 else:

 print "You need to run this script either on an EXOS or BOSS switch"

And we need to not forget to call for the main() to start the Python script.

main()

We can now save our script. We can assign that script to an existing Category, such as
“Provisioning”, and also add it to a Menu. We’ll choose “Device”.

P y t h o n w i t h X M C

P a g e | 40

Confidential. Not For Distribution Without Permission. October 15th 2017

That way, we can launch our script from the topology view, by selecting a device on the map, and
right-click on it.

P y t h o n w i t h X M C

P a g e | 41

Confidential. Not For Distribution Without Permission. October 15th 2017

4.3.2 Fabric Connect L2VSN Script

We are going to create a script to provision a L2VSN on several BEBs, asking for some user input
such as VLAN Id, Service Id (I-SID) and optionally the ports to add to the VLAN. This script does
not take into account a VSP Cluster.

The script will connect to a VOSS switch and configure it. Extreme Fabric Connect is assumed to
be already configured and running. Once again, this script is just an example and has not been
tested a lot.

#@MetaDataStart

#@SectionStart (description = "Service Definition")

#@VariableFieldLabel (description = "VLAN Id <1 - 4094>",

type = string,

required = yes,

readOnly = no,

name = "vid",

value = "1"

)

#@VariableFieldLabel (description = "SERVICE Id <1 - 16 000 000>",

type = string,

required = yes,

readOnly = no,

name = "isid",

value = "1000"

)

#@SectionEnd

#@SectionStart (description = "Single BEB Port Assignment")

#@VariableFieldLabel (description = "UNI Port",

type = string,

required = yes,

readOnly = no,

name = "portlist",

value = "1/1"

)

#@SectionEnd

#@SectionStart (description = "Cluster BEBs MLT Assignment")

#@VariableFieldLabel (description = "MLT",

type = string,

required = yes,

validValues = [yes,no],

readOnly = no,

name = "mlt",

value = "no"

)

#@VariableFieldLabel (description = "MLT Id <1 - 256>",

type = string,

required = yes,

readOnly = no,

name = "mltid",

value = "1"

)

#@SectionEnd

#@SectionStart (description = "UNI Port/MLT 802.1Q Tagging")

#@VariableFieldLabel (description = "802.1Q Tagging",

type = string,

P y t h o n w i t h X M C

P a g e | 42

Confidential. Not For Distribution Without Permission. October 15th 2017

required = yes,

validValues = [yes,no],

readOnly = no,

name = "tag",

value = "yes"

)

#@SectionEnd

#@MetaDataEnd

def getOutputOnly(inputStrings):

 try:

 version = ''.join(emc_vars["serverVersion"].split('.')[:3])

 pivotVersion = ''.join("8.1.2".split('.'))

 if int(version) == int(pivotVersion):

 lines = inputStrings.splitlines()[1:]

 else:

 lines = inputStrings.splitlines()[1:-1]

 return '\n'.join(lines)

 except:

 return None

def getVidVsn(inputString):

 myList = []

 lines = inputString.splitlines()[6:-2]

 for line in lines:

 vid_dict = {}

 parts = line.split()

 if len(parts) > 1:

 vid_dict["vid"] = parts[0]

 vid_dict["isid"] = parts[-1]

 else:

 vid_dict["vid"] = parts[0]

 myList.append(vid_dict)

 return myList

def sendConfigCmds(cmds):

 for cmd in cmds:

 cli_results = emc_cli.send(cmd)

 if cli_results.isSuccess() is False:

 print cli_results.getError()

 return None

 return True

def CreateFAList():

 myList = []

 cli_results = emc_cli.send('show fa interface')

 if cli_results.isSuccess() is False:

 print cli_results.getError()

 return None

 cli_output = cli_results.getOutput()

 cli_output = getOutputOnly(cli_output)

 lines = cli_output.splitlines()[7:-4]

 for line in lines:

 fa_dict = {}

 parts = line.split()

 if len(parts) > 1:

 if parts[0].startswith("Port"):

 fa_dict["intf"] = ''.join(c for c in parts[0] if c not in 'Port')

 else:

 fa_dict["intf"] = parts[0].replace("Mlt","mlt ")

 fa_dict["status"] = parts[1]

P y t h o n w i t h X M C

P a g e | 43

Confidential. Not For Distribution Without Permission. October 15th 2017

 fa_dict["auth"] = parts[4]

 myList.append(fa_dict)

 return myList

def CheckFAonPort(interface):

 fa = CreateFAList()

 if fa is None:

 return None

 for entry in fa:

 if entry["intf"] == interface:

 if entry["status"] == "enabled":

 return None

 return True

def main():

 createVlan = True

 if int(emc_vars["vid"]) > 4094 or int(emc_vars["vid"]) < 1:

 print "Error: The VLAN Id is out of range"

 return

 if int(emc_vars["isid"]) > 16000000 or int(emc_vars["isid"]) < 1:

 print "Error: The Service Id is out of range"

 return

 family = emc_vars["family"]

 if family != "VSP Series":

 print "Error: This script needs to be run on a VSP switch"

 return

 if CheckFAonPort((emc_vars["portlist"], "mlt "+emc_vars["mltid"])[emc_vars["mlt"] == "yes"])

is None:

 print "Error: Cannot create a VLAN on interface {} as Fabric Attach is configured on it

already!".format((emc_vars["portlist"], "mlt "+emc_vars["mltid"])[emc_vars["mlt"] == "yes"])

 return

 if emc_vars["mlt"] == "yes":

 ports = "MLT"

 else:

 ports = emc_vars["portlist"]

 cli_results = emc_cli.send('show vlan i-sid')

 if cli_results.isSuccess() is False:

 print cli_results.getError()

 return

 cli_output = cli_results.getOutput()

 cli_output = getOutputOnly(cli_output)

 if cli_output:

 myList = getVidVsn(cli_output)

 for row in myList:

 if row.get("vid") == emc_vars["vid"]:

 createVlan = False

 if row.get("isid"):

 print "Error: The VLAN {} is already associated to the Service

{}".format(emc_vars["vid"], row.get("isid"))

 return

 if row.get("isid"):

 if row.get("isid") == emc_vars["isid"]:

 print "Error: The Service Id {} is already associated to VLAN

{}".format(emc_vars["isid"], row.get("vid"))

 return

 cmds = ["enable", "configure terminal"]

 result = sendConfigCmds(cmds)

P y t h o n w i t h X M C

P a g e | 44

Confidential. Not For Distribution Without Permission. October 15th 2017

 if result is None:

 return

 if createVlan:

 cmds = ["vlan create {} type port-mstprstp 0".format(emc_vars["vid"])]

 if ports == "MLT":

 if emc_vars["tag"] == "yes":

 cmds.append("mlt {} encapsulation dot1q".format(emc_vars["mltid"]))

 cmds.append("vlan mlt {} {}".format(emc_vars["vid"], emc_vars["mltid"]))

 else:

 if emc_vars["tag"] == "yes":

 cmds.append("interface GigabitEthernet {}".format(ports))

 cmds.append("encapsulation dot1q")

 cmds.append("exit")

 cmds.append("vlan members add {} {} portmember".format(emc_vars["vid"], ports))

 result = sendConfigCmds(cmds)

 if result is None:

 return

 cmds = ["vlan i-sid {} {}".format(emc_vars["vid"], emc_vars["isid"])]

 result = sendConfigCmds(cmds)

 if result is None:

 return

 else:

 print "Ooops"

main()

